

2007 Narking Scheme

Grade	Mark Required		% condidator achieving anada
Awarded	(/ ₈₀)	%	% canadates achieving grade
A	58+	72%	36.0%
В	49+	61%	22.6%
С	41+	51%	18.5%
D	37+	46%	7.5%
No award	<37	< 46%	15.4%

Section:	ection: Multiple Choice		Extended Answer		
Average Mark:	20.7	/30	31.1	/50	

	2007 Int2 Chemistry Marking Scheme								
MC Qu	Answer	% Pupils Correct			Rea	sonin	9		
1	В	92	⊠A Fluorine ⊠B Krypton ⊠C Potassiun ⊠D Zinc is a	is in group 7 a and argon are n is in group 1 transition me	nd is in a dif both in Grou and is in a di tal and is in c	ferent group p 0 and have fferent grou a different g	o from Arg similar ch up from Ai group from	gon (group 0) nemical prope rgon (group 0 n Argon (grou	rties) p 0)
2	D	74	▼A A colour ▼B A Gas giv ▼C Tempera ☑D Solid dis	A A colour change is one sign that a chemical reaction has taken place B A Gas given off is one sign that a chemical reaction has taken place C Temperature rising is one sign that a chemical reaction has taken place D Solid disappearing is dissolving and a physical change not a chemical reaction					
3	A	79	The composit	tion of air is: Nitrogen 78%	Oxygen Co 21%	arbon Dioxid 0.03%	e Nobles	Gases %	
4	D	65	■A Isotopes ■B Isotopes ■C Isotopes ☑D Isotopes	s have differer s have differer s have differer s have same nu	nt nuclei as t nt mass numb nt numbers o mber of prot	hey have dif bers due to c f neutrons tons but diff	ferent nu lifferent r ferent num	mbers of neu numbers of ne nbers of neut	trons 2utrons rons
5	С	68	Solute Solvent Solution	Ethanoic acid Water Vinegar	The substan The liquid wl The mixture	ce which is c nich does th produced w	dissolved e dissolvin hen solute	g e dissolves in	solvent
6	A	79	ビA Covalent 区B Substand 区C Substand 区D Substan	 ☑A Covalent Network substances have covalent bonds in a large network of atoms ☑B Substance is ionic due to presence of positive and negative ions ☑C Substance contains covalent molecules. Not big enough to be covalent network ☑D Substance is metallic with electrons able to jump from atom to atom 					
7	В	78	Co pot co co	omparison of C assium chlorid assium chroma opper sulphate pper chromate	fompounds le white te yellow Blue e Green	Potassium chromate copper ion blue ions +	Conclusi ions are co ions are y s are blue yellow ion	ion olourless yellow 1s make greer	
8	В	71	Property Viscosity Evaporatio Flammabilit Boiling Poin	Petroleum Gas Low n Quickly ty High t Low	Gasoline	Kerosene	Light gas Oil	Heavy Gas Oil	Residue High Slowly Low High
9	D	76	2n-	C ₂ H ₂ If n=2 2 = (2x2) -2 = 4-2	Correct gene = 2 2n-2 = (2	C ₃ H ₄ ral formula: If n=3 x3) -2 = 6-2 = 4	CnH2n-2 4 2n-2 = (2	C ₄ H ₆ If n=4 2x4) -2 = 8-2 = 6	
10	D	64	⊠A Formula ⊠B Formula ⊠C Formula ☑D Formula	= C_3H_8O :. not = $C_5H_{12}O$:. no = $C_4H_{10}O$ but s = $C_4H_{10}O$:. iso	t isomer of C t isomer of C came structur omers - same	⁴ H ₁₀ O as for 4H ₁₀ O as fo re as -OH gr formula bu	rmulae are rmulae are roup is on s t differen	e different e different second carbo t structures	n
11	A	66	☑A Compour 区B Compoun 区C Compoun 区D Compour	nd is an ester a nd is not an est d is an alcohol nd is an carbox	it contains er as C-O-C ylic acid	the ester g group does r	roup -COC not have co	DC arbonyl C=O d	on one end

12	В	82	 ☑ A pH of compound must be pH=7 as -OH groups are neutral not acidic ☑ B pH=7 due to -OH group and C=C double bond will decolourise Bromine solution ☑ C pH of compound must be pH=7 as -OH groups are neutral not acidic ☑ D Compound has C=C double bond which will decolourise Bromine solution quickly 						
13	С	54	 A poly(ethenol) is a synthetic polymer and is soluble in water B poly(ethenol) is a synthetic polymer C poly(ethenol) is a synthetic polymer and is soluble in water D poly(ethenol) is soluble in water 						
14	В	100	 ☑ A Cannot be a repeating unit as the molecule contains a C=C double bond ☑ B Although this is the answer - the question had a mistake ∴ mark awarded to all ☑ C Cannot be a repeating unit as the molecule contains a C=C double bond ☑ D Side group has 2 carbons but in polymer side groups only have 1 carbon 						
15	D	71	 ☑A Fructose turns warm Benedict's solution blue → brick red ☑B Glucose turns warm Benedict's solution blue → brick red ☑C Maltose turns warm Benedict's solution blue → brick red ☑D Sucrose does not turn give a colour change with warm Benedict's solution. 						
16	С	66	Glycerol has the structure: (It is also known as propane-1,2,3-triol) $H - C - C - C - H$ OH OH OH						
17	В	52)ils hare liquids because the shape of C=C double bond stops oil molecules getting oo close together and being a solid. Hydrogen is added across the C=C double bond o straighten the carbons chains and the oil becomes a solid.						
18	В	76	IA carbon dioxide (non-metal oxide) dissolves in water to make an acidic solution IB Copper oxide is insoluble in water (p8 of data booklet) ∴ pH unchanged IC Sodium oxide (metal oxide) dissolves in water to make an alkaline solution						
19	D	77	 ■ A Rate of reaction decreases as concentration of H⁺ decreases ■ B Concentration of H⁺ ions decreases with dilution ■ C Electrical conductivity decreases with dilution as ion concentration decreases ■ D pH is below 7 and inspector up to 7 as water is added 						
20	A	85	TypepHIons in SolutionAcidpH<7Concentration of H*Concentration of OH*NeutralpH=7Concentration of H*= Concentration of OH*AlkalipH>7Concentration of OH*> Concentration of H*						
21	В	69	Volume Concentration No of Moles Mass of Solid 100cm ³ 1 mol l ⁻¹ 0.1mol 14.2g 50cm ³ 2 mol l ⁻¹ 0.1mol 14.2g						
22	С	54	 ☑ A copper + hydrochloric acid → no reaction as copper not reactive enough ☑ B copper oxide + hydrochloric acid → copper chloride + water ☑ C copper carbonate + hydrochloric acid→ copper chloride + water + carbon dioxide ☑ D copper hydroxide + hydrochloric acid→ copper chloride + water 						
23	С	71	 ☑ A Can be used as a fertiliser: soluble compound containing nitrogen ☑ B Can be used as a fertiliser: soluble compound containing potassium + nitrogen ☑ C Cannot be a fertiliser as it does not contain nitrogen, potassium or phosphorus ☑ D Can be used as a fertiliser: soluble compound containing potassium 						
24	D	62	 A Ammonium nitrate and potassium chloride are both soluble B Zinc sulphate and magnesium nitrate are both soluble C Calcium chloride and nickel nitrate are both soluble D Silver iodide is insoluble (sodium nitrate is soluble) 						

25	A	52	Sodium ions and chloride ions are both spectator ions as neither end up in the precipitate (new substance formed). As neither sodium ions and chloride ions are chemically changed, they are spectator ions.
26	В	50	 ☑ A No displacement reaction - magnesium cannot displace magnesium ions ☑ B Magnesium metal will displace zinc ions as Mg is higher in electrochemical series ☑ C No displacement reaction - magnesium cannot displace higher up potassium ions ☑ D No displacement reaction - magnesium cannot displace higher up sodium ions
27	С	90	The highest voltage is achieved by having the biggest difference between metals on the electrochemical series.
28	В	47	$\mathbb{E}A \ 2I^- \rightarrow I_2 + 2e^-$ is the oxidation reaction not a reduction reaction $\mathbb{E}B \ 2I^- \rightarrow I_2 + 2e^-$ is the oxidation reaction at the positive electrode $\mathbb{E}C$ Positive ions move to the negative electrode $\mathbb{E}D$ Positive ions move to the negative electrode
29	A	53	☑A Calcium is a solid at 800°C and is less dense so floats on top ☑B Calcium has not melted at 800°C so calcium is still a solid ☑C Calcium is less dense than molten calcium chloride so calcium floats on top ☑D Calcium has not melted at 800°C so calcium is still a solid
30	D	46	 A Ferroxyl indicator turns blue in the presence of Fe²⁺ ions B Fe³⁺ ions have no effect on ferroxyl indicator C H⁺ ions have no effect on ferroxyl indicator D Ferroxyl indicator turns pink in the presence of OH⁻ ions

2007 Int2 Chemistry Marking Scheme							
Long Qu	Answer	Reasoning					
1a	1 0 electron -1	ParticleLocationChargeMassProtonin nucleus+11 amuNeutronin nucleus01 amuElectronoutside nucleus-1approx zero					
1b(i)	2	Atomic number = no. of protons = 2					
1b(ii)	Х	No. of protons = 2 and no. of electrons = 0 ∴ Alpha particles are positively charge ∴ Alpha particles are bend towards negative plate (X)					
2a	1.45	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{29 - 0}{20 - 0}$ = $\frac{29}{20}$ = 1.45 cm ³ s ⁻¹					
2b(i)	Reactant and catalyst are in same state	Type of CatalystDefinitionHomogeneousCatalyst in same state as reactantsHeterogeneousCatalyst in different state from reactants					
2b(ii)	Amber	Catalysts speed up chemical reactions but are not used up in the reaction and are chemically unchanged. Amber coloured catalyst would remain the same during the course of the reaction					
За	Electrons able to move from atom to atom	Electrons are free to move from atom to atom because they are delocalised and not fixed to any bond or atom. All metals conduct electricity.					
3b(i)	Neutralisation	$\begin{array}{cccc} ACID & + \text{ METAL OXIDE } \longrightarrow & SALT & + & WATE \\ & & & & & & & & & & & & & & & & & & $	R				
3b(ii)	Covalent	Tin chloride contains a metal and non-metal in the compound and would be expected to have ionic bondin However, compounds with ionic bonding are solids at room temperature and have high melting points. • To be a liquid at room temperature means that tin chloride must have covalent bonding and b molecular.	ng. be				
4 a(i)	(aq)	Magnesium chloride is soluble in water (p8 of data booklet) The symbol of dissolved in water is (aq) which means aqueous					
4 a(ii)	Burns with a pop	GasHydrogenOxygenCarbon DioxideGas TestBurns with a popRelights glowing splintTurns lime water milky					
4b	0.4	$gfm Mg = 24.3g$ no. of mol = $\frac{mass}{gfm}$ = $\frac{4.9}{24.5}$ = 0.2 mol $Mg + 2HCl \longrightarrow MgCl_2 + H_2$ $\lim_{\substack{1 \text{mol} \\ 0.2 \text{mol} \\ gfm H_2 = 2g}} \lim_{\substack{1 \text{mol} \\ 0.2 \text{mol} \\ mass = \text{no. of mol} \times gfm = 0.2 \times 2 = 0.4q}$					
5α	H H H-C-C-S-H H H	In the bond to the-SH thiol group, the S atom has a valency of 2 so it makes 2 bonds (1 to the C atom and 1 to the H atom) However -H-S is incorrect due to the valency of H being 1 and cannot ma 2 bonds	ake				

5b	2-methylpropane-1-thiol	$\begin{array}{c c} H & CH_{3}H \\ H & -C & -C & -C & -H \\ H & H & H & H \\ \end{array}$ $\begin{array}{c c} H & CH_{3}H \\ H & -C & -C & -C & -S & -H \\ H & H & H & H \\ \end{array}$ $\begin{array}{c c} H & -C & -C & -C & -S & -H \\ H & H & H & H \\ \end{array}$ $\begin{array}{c c} H & -C & -C & -C & -S & -H \\ H & H & H & H \\ \end{array}$ $\begin{array}{c c} H & -C & -C & -C & -S & -H \\ H & H & H & H \\ \end{array}$ $\begin{array}{c c} H & -C & -C & -C & -S & -H \\ H & H & H & H \\ \end{array}$ $\begin{array}{c c} H & -C & -C & -S & -H \\ H & H & H & H \\ \end{array}$ $\begin{array}{c c} SH & group \ could \ be \ placed \ on \ C_1 \ or \ C_2 \ so \ must \ be \\ give \ a \ number \ in \ the \ name \end{array}$
5с	sulphur dioxide	Compounds containing sulphur release sulphur dioxide when burned thiol + oxygen
6a	unsaturated bromine decolourises no change unsaturated	A C ₆ H ₁₄ No change saturated C ₆ H ₁₄ is hexane: no C=C double bonds B C ₆ H ₁₂ Bromine decolourises unsaturated C ₆ H ₁₂ is hexene: C=C double bond decolourises bromine C C ₆ H ₁₂ No change saturated C ₆ H ₁₂ is cyclohexane: no C=C double bonds D C ₆ H ₁₀ Bromine decolourises unsaturated C ₆ H ₁₀ is cyclohexene: C=C double bonds
6b	Safety gloves or wash spills with soldium thiosulphate.	Int2 PPA 2.2 Question. (sodium thiosulphate will react with spilled Bromine)
6c	Hexene	C_6H_{12} could be hexene or cyclohexane. However, as compound B decolourises bromine solution it must have a C=C double and therefore cannot be cyclohexane and must be hexene.
7a	C=C double bond	Styrene forms poly(styrene) by addition polymerisation. Addition reactions require a C=C double bond for a reaction to occur.
7b	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
7c	Poly(phenylethene)	Styrene is also known as phenylethene
8a	$C_{6}H_{12}O_{6}$ \downarrow $2C_{2}H_{5}OH + 2CO_{2}$	$C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$
8 b(i)	Line graph showing:	$\frac{1}{2}$ mark: labelling axes $\frac{1}{2}$ mark: correct scales $\frac{1}{2}$ mark: plotting points $\frac{1}{2}$ mark: drawing line
8b(ii)	Enzyme denatured or no longer works	Enzymes work best at body temperature (37°C). Temperatures above 37°C change the shape of the enzyme and stops it from working.
9a	Diagram showing:	Gas In to pH indicator tube
9b	CO2 dissolves to make an acid	Type of OxideDissolved in waterExamplesmetal oxidealkaline solutionsodium oxidepotassium oxidecalcium oxidenon-metal oxideacidic solutioncarbon dioxidesulphur dioxidenitrogen dioxide

10a	0 H 	 The peptide link is the same as an amide link Peptide link is found in proteins Amide link is found in polyamide polymers like nylon 				
10b	H H O C - C - H	H H O H H O H H O 				
10c	Condensation	Condensation polymerisation is the process where monomers e.g. <i>amino acids</i> join together to make polymers e.g. <i>protein</i> with a small molecule e.g. <i>water</i> is removed during the joining process.				
11a	Iron sacrificially protects copper	As iron is higher up reactivity series than copper and electrons from the iron flow to the copper to protect the copper from corroding.				
11b	Seawater contains ions/electrolyte	Ions are required to complete the circuit and seawater contains many more ions than pure water.				
11c	Fe ₂ O ₃	Write down Valency below each element's symbolPut in Cross-over ArrowsFollow arrows to get formulaFeOFeO323* 2Fe2O3				
12a	Electrode A or	Hydrogen is produced by: $2H^- \rightarrow H_2 + 2e^-$				
12b	2Na⁺+2H⁻→2Na+H₂	$2 \times 0 \ 2 \operatorname{Na}^{+} + 2 e^{-} \rightarrow 2 \operatorname{Na}^{+}$ $0 \ 2 \operatorname{H}^{-} \qquad \rightarrow \operatorname{H}_{2} + 2 e^{-}$ $\operatorname{add} 0' + 0$ $2 \operatorname{Na}^{+} + 2 \operatorname{H}^{-} \rightarrow 2 \operatorname{Na} + \operatorname{H}_{2}$				
12c	Higher Higher	Solution Strong/Weak pH Conductivity 0.1 mol l ⁻¹ sodium hydroxide solution strong alkali higher higher 0.1 mol l ⁻¹ ammonia solution weak alkali lower lower				
13a(i)	2 or 2,0	Lithium atoms have an electron arrangement of 2,1 (p1 data booklet) Lithium ions attain a full outer shell by losing 1 electron $Li \rightarrow Li^* + e^-$ 2,1 $\rightarrow 2$				
13a(ii)	Lithium atoms are too reactive	Lithium is a group 1 Alkali Metal and will react with oxygen or water rapidly				
13b	The higher metal is in electrochemical series the higher the voltage	The voltage from a cell is directly linked to the position of the two metals in the electrochemical series. The bigger the difference the higher the voltage.				
14a	chlorine carbon dioxide distillation magnesium chloride	Problem solving: Written passage \rightarrow flow chart				
14b(i)	3.6g	45% of 8g = $\frac{45}{100}$ × 8g = 3.6g				
14b(ii)	0.075mol	no of mol = $\frac{mass}{gfm}$ = $\frac{3.6}{48}$ = 0.075 mol				

150	sulphuric acid		Name of Acid	hydrochloric acid	sulphuric acid	nitric acid]
190			2 nd Name of Salt	chloride	sulphate	nitrate	
151.00	to remove		nagnesium + sulphu	ric acid — 🕨	• magnesium sul	phate + hydrogei	n
150(1)	unreacted magnesium	When all the sulphuric acid has reacted with the magnesium, there will be unreacted solid magnesium metal left over in the beaker as magnesium is insoluble in water. Unreacted magnesium is removed by filtration.					
15b(ii)	Evaporation or	Once the unreacted magnesium metal is removed by filtration, the magnesium					
	boil off water	sulpł	nate filtrate can ther	n be evaporated to	leave solid magne	esium sulphate.	
15.	Reactants have more	In ex	In exothermic reactions, reactants have more chemical energy than products. During the				
190	energy then products	react into l	tion, the energy left ove neat energy and increase	er from the reactant es the temperature	s turning into the pi of the surroundings	roducts is transferre	SQ